Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Allergy ; 73(4): 875-884, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29319882

RESUMO

BACKGROUND: Polymerized allergoids coupled to nonoxidized mannan (PM-allergoids) may represent novel vaccines targeting dendritic cells (DCs). PM-allergoids are better captured by DCs than native allergens and favor Th1/Treg cell responses upon subcutaneous injection. Herein we have studied in mice the in vivo immunogenicity of PM-allergoids administered sublingually in comparison with native allergens. METHODS: Three immunization protocols (4-8 weeks long) were used in Balb/c mice. Serum antibody levels were tested by ELISA. Cell responses (proliferation, cytokines, and Tregs) were assayed by flow cytometry in spleen and lymph nodes (LNs). Allergen uptake was measured by flow cytometry in myeloid sublingual cells. RESULTS: A quick antibody response and higher IgG2a/IgE ratio were observed with PM-allergoids. Moreover, stronger specific proliferative responses were seen in both submandibular LNs and spleen cells assayed in vitro. This was accompanied by a higher IFNγ/IL-4 ratio with a quick IL-10 production by submandibular LN cells. An increase in CD4+ CD25high FOXP3+ Treg cells was detected in LNs and spleen of mice treated with PM-allergoids. These allergoids were better captured than native allergens by antigen-presenting (CD45+ MHC-II+ ) cells obtained from the sublingual mucosa, including DCs (CD11b+ ) and macrophages (CD64+ ). Importantly, all the differential effects induced by PM-allergoids were abolished when using oxidized instead of nonoxidized PM-allergoids. CONCLUSION: Our results demonstrate for the first time that PM-allergoids administered through the sublingual route promote the generation of Th1 and FOXP3+ Treg cells in a greater extent than native allergens by mechanisms that might well involve their better uptake by oral antigen-presenting cells.


Assuntos
Administração Sublingual , Mananas/administração & dosagem , Extratos Vegetais/administração & dosagem , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Alergoides , Animais , Células Apresentadoras de Antígenos/imunologia , Feminino , Mananas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Bucal/imunologia , Células Mieloides/imunologia , Extratos Vegetais/imunologia , Imunoterapia Sublingual/métodos
2.
Mucosal Immunol ; 10(4): 924-935, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27966556

RESUMO

Recurrent urinary tract infections (RUTIs) are one of the most common bacterial infectious diseases, especially in women. Antibiotics remain the mainstay of treatment, but their overuse is associated with antibiotic-resistant infections and deleterious effects in the microbiota. Therefore, alternative approaches are fully demanded. Sublingual immunization with MV140 (Uromune), a polyvalent bacterial preparation (PBP) of whole heat-inactivated bacteria, demonstrated clinical efficacy for the treatment of RUTIs, but the involved immunological mechanisms remain unknown. Herein, we demonstrated that MV140 endorses human dendritic cells (DCs) with the capacity to generate Th1/Th17 and IL-10-producing T cells by mechanisms depending on spleen tyrosine kinase (Syk)- and myeloid differentiation primary response gene 88 (MyD88)-mediated pathways. MV140-induced activation of nuclear factor κB (NF-κB) and p38 in human DCs is essential for the generated Th1/Th17 and IL-10 immune responses whereas c-Jun N-terminal Kinase (JNK) and extracellular-signal regulated kinase (ERK) contribute to Th1 and IL-10 responses, respectively. Sublingual immunization of BALB/c mice with MV140 also induces potent systemic Th1/Th17 and IL-10 responses in vivo. We uncover immunological mechanisms underlying the way of action of MV140, which might well also contribute to understand the rational use of specific PBPs in other clinical conditions with potential high risk of recurrent infections.


Assuntos
Vacinas Bacterianas/imunologia , Células Dendríticas/imunologia , Interleucina-10/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Infecções Urinárias/imunologia , Administração Sublingual , Animais , Células Cultivadas , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , Recidiva , Transdução de Sinais , Quinase Syk/metabolismo , Infecções Urinárias/prevenção & controle
3.
Clin Dev Immunol ; 2013: 362163, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324504

RESUMO

The mesoporous silicon microparticles (MSMPs) are excellent vehicles for releasing molecules inside the cell. The aim of this work was to use MSMPs to deliver viral specific MHC class I restricted epitopes into human antigen presenting cells (monocyte derived dendritic cells, MDDCs) to facilitate their capture, processing, and presentation to CD8+ (cytotoxic) T lymphocytes. We show for the first time that MSMPs vehiculation of antigenic peptides enhances their MHC class I presentation by human MDDCs to CD8 T lymphocytes.


Assuntos
Apresentação de Antígeno/imunologia , Compostos de Cálcio , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Nanopartículas , Silicatos , Células Apresentadoras de Antígenos/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Compostos de Cálcio/química , Células Cultivadas , Células Dendríticas/metabolismo , Epitopos/administração & dosagem , Epitopos/imunologia , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Silicatos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...